Utilizando el nuevo conjunto de telescopios ALMA (Atacama Large Millimeter/submillimeter Array), un equipo de astrónomos ha conseguido obtener una imagen de la región que rodea a una joven estrella, en la que las partículas de polvo pueden crecer por acumulación.
Esta es la primera vez que este tipo de trampa de polvo ha sido modelada y observada claramente y soluciona el eterno misterio sobre cómo las partículas de polvo en los discos crecen, alcanzando tamaños mayores, de manera que, finalmente, pueden formar cometas, planetas y otros cuerpos rocosos. Los resultados se han publicado en la revista Science.
Los astrónomos saben que hay numerosos planetas alrededor de otras estrellas. Pero no terminan de comprender del todo cómo se forman y hay muchos aspectos de la formación de los cometas, planetas y otros cuerpos rocosos que siguen siendo un misterio.
Sin embargo, utilizando el gran potencial de ALMA, se han llevado a cabo nuevas observaciones que ahora ofrecen respuestas a las grandes preguntas: ¿cómo pueden los diminutos granos de polvo del disco que rodea a estrellas jóvenes crecer y hacerse cada vez más grandes hasta, finalmente, convertirse en escombros, e incluso en rocas que bien pueden superar el metro de tamaño?
Los modelos informáticos sugieren que los granos de polvo crecen tras chocar y quedarse pegados. Sin embargo, cuando estos granos de mayor tamaño chocan de nuevo a grandes velocidades, por lo general se rompen en pedazos y vuelven a su situación anterior. Incluso cuando esto no ocurre, los modelos muestran que los granos de mayor tamaño se moverían rápidamente hacia el interior debido a la fricción entre el polvo y el gas y caerían sobre su estrella anfitriona, sin darles la oportunidad de seguir creciendo.
De algún modo, el polvo necesita un refugio seguro en el que las partículas puedan seguir creciendo hasta que sean lo suficientemente grades como para sobrevivir por sí solas [1]. Ya se había propuesto antes la existencia de estas “trampas de polvo”, pero hasta el momento no había pruebas observacionales.
Esta es la primera vez que este tipo de trampa de polvo ha sido modelada y observada claramente y soluciona el eterno misterio sobre cómo las partículas de polvo en los discos crecen, alcanzando tamaños mayores, de manera que, finalmente, pueden formar cometas, planetas y otros cuerpos rocosos. Los resultados se han publicado en la revista Science.
Los astrónomos saben que hay numerosos planetas alrededor de otras estrellas. Pero no terminan de comprender del todo cómo se forman y hay muchos aspectos de la formación de los cometas, planetas y otros cuerpos rocosos que siguen siendo un misterio.
Sin embargo, utilizando el gran potencial de ALMA, se han llevado a cabo nuevas observaciones que ahora ofrecen respuestas a las grandes preguntas: ¿cómo pueden los diminutos granos de polvo del disco que rodea a estrellas jóvenes crecer y hacerse cada vez más grandes hasta, finalmente, convertirse en escombros, e incluso en rocas que bien pueden superar el metro de tamaño?
Los modelos informáticos sugieren que los granos de polvo crecen tras chocar y quedarse pegados. Sin embargo, cuando estos granos de mayor tamaño chocan de nuevo a grandes velocidades, por lo general se rompen en pedazos y vuelven a su situación anterior. Incluso cuando esto no ocurre, los modelos muestran que los granos de mayor tamaño se moverían rápidamente hacia el interior debido a la fricción entre el polvo y el gas y caerían sobre su estrella anfitriona, sin darles la oportunidad de seguir creciendo.
De algún modo, el polvo necesita un refugio seguro en el que las partículas puedan seguir creciendo hasta que sean lo suficientemente grades como para sobrevivir por sí solas [1]. Ya se había propuesto antes la existencia de estas “trampas de polvo”, pero hasta el momento no había pruebas observacionales.
La importancia de la trampa
Nienke van der Marel (estudiante de doctorado de la Universidad de Leiden, en los Países Bajos, y autora principal del artículo), junto con sus colaboradores, utilizó ALMA para estudiar el disco en un sistema llamado Oph-IRS 48 [2]. Descubrieron que la estrella estaba circundada por un anillo de gas con un hueco central, probablemente creado por un planeta no visto o una estrella compañera.
Observaciones anteriores realizadas con el telescopio VLT (Very Large Telescope) del Observatorio Europeo Austral (ESO) ya habían mostrado que las pequeñas partículas de polvo también formaban una estructura de anillo similar. Pero la nueva visión de ALMA del lugar en el que se encontraron partículas de polvo mayores que un milímetro ¡era muy diferente!
“De entrada, la forma del polvo en la imagen fue una completa sorpresa”, afirma van der Marel en un comunicado del Observatorio. “En lugar del anillo que esperábamos ver, ¡descubrimos algo que claramente tenía forma de anacardo! Tuvimos que convencernos a nosotros mismos de que esa forma era real, pero la fuerte señal y la claridad de las observaciones de ALMA no dejaban lugar a dudas en cuanto a la estructura. Entonces nos dimos cuenta de lo que habíamos descubierto”.
Lo que se ha descubierto es una región en la que los granos de polvo de mayor tamaño han sido atrapados y han podido crecer mucho más al chocar y quedarse pegados. Era una trampa de polvo (justo lo que andaban buscando los teóricos).
Tal y como explica van der Marel: “Es probable que estemos observando una especie de factoría de cometas, ya que las condiciones son las adecuadas para que las partículas crezcan desde un tamaño milimétrico hasta un tamaño cometario. No es probable que el polvo forme planetas a esa distancia de la estrella. Pero en un futuro no muy lejano ALMA podrá observar esas trampas de polvo más cerca de la estrella anfitriona, en las que están en funcionamiento los mismos mecanismos. Este tipo de trampas de polvo sí serían la cuna de planetas recién nacidos”.
La trampa de polvo se forma a medida que partículas de polvo de mayor tamaño se mueven hacia regiones de mayor presión. Los modelos informáticos muestran que estas regiones de alta presión pueden originarse a partir de movimientos del gas situado al extremo de un agujero de gas — justo como el que se ha encontrado en este disco.
“La combinación de los trabajos de modelado junto con las observaciones de alta calidad de ALMA hacen de este un proyecto único”, afirma Cornelis Dullemond, del Instituto de Teoría Astrofísica, en Heidelberg (Alemania), experto en evolución del polvo y modelado de discos y miembro del equipo. “Cuando se llevaron a cabo estas observaciones estábamos trabajando en modelos que predecían exactamente este tipo de estructuras: una afortunada coincidencia”.
Imagen tomada gracias a ALMA
Las observaciones se llevaron a cabo cuando el conjunto ALMA aún estaba en construcción. Utilizaron los receptores de banda 9 de ALMA, unos dispositivos fabricados en Europa que permiten a ALMA crear las imágenes más nítidas que se han obtenido hasta el momento.
“Estas observaciones demuestran que ALMA es capaz de proporcionar ciencia revolucionaria, incluso con menos de la mitad de las antenas en uso”, afirma Ewine van Dishoeck, del Observatorio de Leiden, que ha sido uno de los principales colaboradores del proyecto ALMA durante más de 20 años.
“El increíble salto, tanto en sensibilidad como en nitidez, de las imágenes obtenidas en la banda 9, nos ofrece la oportunidad de estudiar aspectos básicos de la formación planetaria de maneras que, sencillamente, antes no eran posibles”.
Nienke van der Marel (estudiante de doctorado de la Universidad de Leiden, en los Países Bajos, y autora principal del artículo), junto con sus colaboradores, utilizó ALMA para estudiar el disco en un sistema llamado Oph-IRS 48 [2]. Descubrieron que la estrella estaba circundada por un anillo de gas con un hueco central, probablemente creado por un planeta no visto o una estrella compañera.
Observaciones anteriores realizadas con el telescopio VLT (Very Large Telescope) del Observatorio Europeo Austral (ESO) ya habían mostrado que las pequeñas partículas de polvo también formaban una estructura de anillo similar. Pero la nueva visión de ALMA del lugar en el que se encontraron partículas de polvo mayores que un milímetro ¡era muy diferente!
“De entrada, la forma del polvo en la imagen fue una completa sorpresa”, afirma van der Marel en un comunicado del Observatorio. “En lugar del anillo que esperábamos ver, ¡descubrimos algo que claramente tenía forma de anacardo! Tuvimos que convencernos a nosotros mismos de que esa forma era real, pero la fuerte señal y la claridad de las observaciones de ALMA no dejaban lugar a dudas en cuanto a la estructura. Entonces nos dimos cuenta de lo que habíamos descubierto”.
Lo que se ha descubierto es una región en la que los granos de polvo de mayor tamaño han sido atrapados y han podido crecer mucho más al chocar y quedarse pegados. Era una trampa de polvo (justo lo que andaban buscando los teóricos).
Tal y como explica van der Marel: “Es probable que estemos observando una especie de factoría de cometas, ya que las condiciones son las adecuadas para que las partículas crezcan desde un tamaño milimétrico hasta un tamaño cometario. No es probable que el polvo forme planetas a esa distancia de la estrella. Pero en un futuro no muy lejano ALMA podrá observar esas trampas de polvo más cerca de la estrella anfitriona, en las que están en funcionamiento los mismos mecanismos. Este tipo de trampas de polvo sí serían la cuna de planetas recién nacidos”.
La trampa de polvo se forma a medida que partículas de polvo de mayor tamaño se mueven hacia regiones de mayor presión. Los modelos informáticos muestran que estas regiones de alta presión pueden originarse a partir de movimientos del gas situado al extremo de un agujero de gas — justo como el que se ha encontrado en este disco.
“La combinación de los trabajos de modelado junto con las observaciones de alta calidad de ALMA hacen de este un proyecto único”, afirma Cornelis Dullemond, del Instituto de Teoría Astrofísica, en Heidelberg (Alemania), experto en evolución del polvo y modelado de discos y miembro del equipo. “Cuando se llevaron a cabo estas observaciones estábamos trabajando en modelos que predecían exactamente este tipo de estructuras: una afortunada coincidencia”.
Imagen tomada gracias a ALMA
Las observaciones se llevaron a cabo cuando el conjunto ALMA aún estaba en construcción. Utilizaron los receptores de banda 9 de ALMA, unos dispositivos fabricados en Europa que permiten a ALMA crear las imágenes más nítidas que se han obtenido hasta el momento.
“Estas observaciones demuestran que ALMA es capaz de proporcionar ciencia revolucionaria, incluso con menos de la mitad de las antenas en uso”, afirma Ewine van Dishoeck, del Observatorio de Leiden, que ha sido uno de los principales colaboradores del proyecto ALMA durante más de 20 años.
“El increíble salto, tanto en sensibilidad como en nitidez, de las imágenes obtenidas en la banda 9, nos ofrece la oportunidad de estudiar aspectos básicos de la formación planetaria de maneras que, sencillamente, antes no eran posibles”.
Referencia bibliográfica:
Van der Marel et al. A major asymmetric dust trap in a transition disk. Science (2013). DOI: 10.1126/science.1236770.
Van der Marel et al. A major asymmetric dust trap in a transition disk. Science (2013). DOI: 10.1126/science.1236770.