Tendencias 21
   




Colisión gigante en el sistema planetario Kepler 107

Dos de los cuatro planetas que orbitan a la estrella surgieron de un impacto similar al que formó la Luna


Una colisión gigante ocurrió probablemente en el sistema planetario Kepler 107, que dio origen a dos de los planetas que orbitan a la estrella central. Un impacto similar al que ocurrió cuando se formó la Luna.


IAC/T21
04/02/2019

Esquema de la diversidad de los cuatro planetas que orbitan a la Estrella Kepler 107 (la más brillante a la izquierda de la imagen). El planeta Kepler 107-C, el más denso de los cuatro, no es el que está más cerca de la estrella, como era de esperar. Esta anomalía podría explicarse por una colisión de este planeta con otro cuerpo celeste. IRFU, CEA, Universidad de Paris-Saclay.
Esquema de la diversidad de los cuatro planetas que orbitan a la Estrella Kepler 107 (la más brillante a la izquierda de la imagen). El planeta Kepler 107-C, el más denso de los cuatro, no es el que está más cerca de la estrella, como era de esperar. Esta anomalía podría explicarse por una colisión de este planeta con otro cuerpo celeste. IRFU, CEA, Universidad de Paris-Saclay.
Dos de los planetas que orbitan a la estrella Kepler 107, en la constelación del Cisne, podrían ser fruto de un impacto como el que afectó a la Tierra para formar la Luna, según una investigación publicada en la revista Nature Astronomy.

Según la Teoría del Gran Impacto, la Luna se originó como resultado de una colisión entre la joven Tierra y un protoplaneta del tamaño de Marte, que recibe el nombre de Tea. Ahora se cree que algo similar ocurrió en Kepler 107.

Desde que en 1995 se descubriese el primer planeta extrasolar, hoy podemos contar casi 4.000 planetas alrededor de las estrellas más cercanas. Esto permite estudiar ahora una gran diversidad de configuraciones en los sistemas planetarios.

La evolución de los planetas que orbitan otras estrellas puede verse afectada, principalmente, por dos fenómenos: la evaporación de las capas superiores del planeta, bajo el efecto de los rayos X y UV emitidos por la estrella central, y por los impactos de otros cuerpos celestes del tamaño de un planeta.

El primer efecto se ha observado varias veces en sistemas extrasolares. Sin embargo, no se han podido aportar pruebas de la existencia de impactos gigantescos, como el aparentemente acontecido en el sistema Kepler 107, hasta ahora.

La estrella central Kepler 107 es un poco más grande que el Sol y tiene cuatro planetas que giran a su alrededor, pero fueron los dos más cercanos a ella los que interesaron a los astrofísicos.

Utilizando datos del satélite Kepler, de la NASA, y del Telescopio Nazionale Galileo (TNG), instalado en el Observatorio del Roque de los Muchachos (Garafía, La Palma), el equipo determinó las características de la estrella y midió el radio y la masa de estos planetas.

Aunque los dos más próximos tienen un radio similar, sus masas son muy diferentes. De hecho, el segundo de ellos es tres veces más denso que el primero. La extraordinaria densidad del llamado planeta Kepler 107c es más del doble que la de la Tierra.

Esta densidad, excepcional para un planeta, ha intrigado a los investigadores y sugiere que su núcleo metálico, su parte más densa, representa una proporción anormalmente grande del planeta.

Impacto gigantesco

Sin embargo, todo podría ser normal si no fuese porque la teoría de la foto-evaporación predice que el planeta más denso en un sistema debe ser también el más cercano a su estrella. Para explicar cómo es posible que, en este caso, el más cercano sea la mitad de denso que el segundo, se ha planteado la hipótesis de que el planeta Kepler 107c se haya formado como resultado de un impacto gigantesco.

Este impacto que habría arrancado sus capas externas aumentando así su denso núcleo central. Después de las pruebas realizadas con simulaciones, esta hipótesis parece ser la más probable.

Este trabajo permitirá mejorar la formación y evolución de los sistemas planetarios. En particular, destaca la importancia de la sinergia entre la física estelar y la investigación de los exoplanetas.

"Necesitamos conocer la estrella para conocer mejor el planeta que la orbita”, afirma Savita Mathur, investigadora del Instituto de Astrofísica de Canarias (IAC) y una de las autoras del artículo.

Y añade: “En este trabajo, realizamos un análisis sísmico para caracterizar los parámetros de la estrella que alberga el planeta. La astrosismología está jugando un papel clave en el campo de los exoplanetas, ya que ha demostrado ser uno de los mejores métodos para caracterizar con precisión las estrellas”.

Por ello, se ha convertido en uno de los principales métodos para caracterizar estrellas durante la última década y lo seguirá siendo en los años venideros, gracias a las misiones espaciales para el descubrimiento de exoplanetas: TESS (NASA) y PLATO (ESA).

Referencia

A giant impact as the likely origin of different twins in the Kepler-107 exoplanet system.  Aldo S. Bonomo et al. Nature Astronomy. DOI: 10.1038/s41550-018-0684-9.
 
 



Artículo leído 3190 veces





Nuevo comentario:
Twitter

Los comentarios tienen la finalidad de difundir las opiniones que le merecen a nuestros lectores los contenidos que publicamos. Sin embargo, no está permitido verter comentarios contrarios a las leyes españolas o internacionales, así como tampoco insultos y descalificaciones de otras opiniones. Tendencias21 se reserva el derecho a eliminar los comentarios que considere no se ajustan al tema de cada artículo o que no respeten las normas de uso. Los comentarios a los artículos publicados son responsabilidad exclusiva de sus autores. Tendencias21 no asume ninguna responsabilidad sobre ellos. Los comentarios no se publican inmediatamente, sino que son editados por nuestra Redacción. Tendencias21 podrá hacer uso de los comentarios vertidos por sus lectores para ampliar debates en otros foros de discusión y otras publicaciones.