Miotubos desarrollados en laboratorio tras tres semanas en un hydrogel de gelatin. Imagen: Archana Bettadapur, Gio Suh, Evelyn Wang, Holly Huber, Alyssa Viscio y Megan McCain. Fuente: USC.
La investigadora Megan L. MacCain, de la Universidad del Sur de California (USC), y sus compañeros han desarrollado un método que permite desarrollar fibras musculares más grandes y fuertes.
Para ello, han creado un pequeño soporte, parecido a un stent o dispositivo con forma de muelle que ayuda a corregir el estrechamiento de las arterias, que permite que las células y tejidos se mantengan unidos.
Este soporte, también denominado “chip”, está moldeado en un gel saturado con agua y hecho con gelatina. Los científicos lo describen en un artículo publicado en Scientific Reports.
Intento fallido previo
Durante el desarrollo de un embrión, los músculos del esqueleto se crean cuando las células madre, denominadas en este caso mioblastos, se fusionan para formar fibras musculares conocidas como miotubos.
En anteriores experimentos, los científicos separaron miotubos de ratón de soportes de plástico recubiertos de proteína tras aproximadamente una semana, pero dichos miotubos no se desarrollaron.
En un posterior experimento, ya realizado con el soporte de gel hecho a partir de gelatina (derivado natural del colágeno proteico que se encuentra en el músculo), consiguieron en cambio mejores resultados: Después de tres semanas, muchos de los miotubos de ratón seguían adheridos a estos chips de gelatina y eran más largos, más anchos y estaban más desarrollados de lo normal.
Para ello, han creado un pequeño soporte, parecido a un stent o dispositivo con forma de muelle que ayuda a corregir el estrechamiento de las arterias, que permite que las células y tejidos se mantengan unidos.
Este soporte, también denominado “chip”, está moldeado en un gel saturado con agua y hecho con gelatina. Los científicos lo describen en un artículo publicado en Scientific Reports.
Intento fallido previo
Durante el desarrollo de un embrión, los músculos del esqueleto se crean cuando las células madre, denominadas en este caso mioblastos, se fusionan para formar fibras musculares conocidas como miotubos.
En anteriores experimentos, los científicos separaron miotubos de ratón de soportes de plástico recubiertos de proteína tras aproximadamente una semana, pero dichos miotubos no se desarrollaron.
En un posterior experimento, ya realizado con el soporte de gel hecho a partir de gelatina (derivado natural del colágeno proteico que se encuentra en el músculo), consiguieron en cambio mejores resultados: Después de tres semanas, muchos de los miotubos de ratón seguían adheridos a estos chips de gelatina y eran más largos, más anchos y estaban más desarrollados de lo normal.
También músculos humanos
Los investigadores indican que los miotubos humanos deberían desarrollarse de la misma forma en estos chips de gelatina. Los nuevos y mejorados “músculos en chip” podrían ser usados en un futuro para estudiar el desarrollo del músculo humano y sus enfermedades, lo que a su vez podría ayudar a desarrollar nuevos medicamentos.
“Las enfermedades y trastornos que conciernen al músculo esquelético, desde severas distrofias hasta la reducción de la masa muscular debido al paso del tiempo, reducen drásticamente la calidad de vida de millones de personas”, afirma McCain, de la USC Viterbi School of Engineering, en un comunicado de la USC.
“Creando una plataforma barata y accesible para el estudio del músculo esquelético en laboratorio esperamos poder investigar nuevos tratamientos para estos pacientes”, sigue diciendo la investigadora.
Estudiar la esclerosis lateral amiotrófica
Tras haber sido galardonada en los Eli and Edythe Broad Innovation Awards de biología celular y medicina regenerativa de la UCS,McCain ya está poniendo en marcha más chips, o soportes, de gelatina, Este premio supone 120 mil dólares (algo más de 100 mil euros), que irán destinados a su investigación.
McCain y su equipo usarán los nuevos chips para estudiar la esclerosis lateral amiotrófica (ELA), también denominada enfermedad de Lou Gehring, un trastorno que daña las uniones entre las células del sistema nervioso y las células de la fibra muscular (las llamadas uniones neuromusculares).
En esta fase del proyecto, los investigadores usarán piel o células sanguíneas de pacientes con ELA y chips de gelatina para llevar a cabo el estudio de las uniones neuromusculares.
Los investigadores indican que los miotubos humanos deberían desarrollarse de la misma forma en estos chips de gelatina. Los nuevos y mejorados “músculos en chip” podrían ser usados en un futuro para estudiar el desarrollo del músculo humano y sus enfermedades, lo que a su vez podría ayudar a desarrollar nuevos medicamentos.
“Las enfermedades y trastornos que conciernen al músculo esquelético, desde severas distrofias hasta la reducción de la masa muscular debido al paso del tiempo, reducen drásticamente la calidad de vida de millones de personas”, afirma McCain, de la USC Viterbi School of Engineering, en un comunicado de la USC.
“Creando una plataforma barata y accesible para el estudio del músculo esquelético en laboratorio esperamos poder investigar nuevos tratamientos para estos pacientes”, sigue diciendo la investigadora.
Estudiar la esclerosis lateral amiotrófica
Tras haber sido galardonada en los Eli and Edythe Broad Innovation Awards de biología celular y medicina regenerativa de la UCS,McCain ya está poniendo en marcha más chips, o soportes, de gelatina, Este premio supone 120 mil dólares (algo más de 100 mil euros), que irán destinados a su investigación.
McCain y su equipo usarán los nuevos chips para estudiar la esclerosis lateral amiotrófica (ELA), también denominada enfermedad de Lou Gehring, un trastorno que daña las uniones entre las células del sistema nervioso y las células de la fibra muscular (las llamadas uniones neuromusculares).
En esta fase del proyecto, los investigadores usarán piel o células sanguíneas de pacientes con ELA y chips de gelatina para llevar a cabo el estudio de las uniones neuromusculares.
Referencia bibliográfica:
Archana Bettadapur, Gio C. Suh, Nicholas A. Geisse, Evelyn R. Wang, Clara Hua, Holly A. Huber, Alyssa A. Viscio, Joon Young Kim, Julie B. Strickland, Megan L. McCain. Prolonged Culture of Aligned Skeletal Myotubes on Micromolded Gelatin Hydrogels. Scientific Reports, (2016). DOI: 10.1038/srep28855.
Archana Bettadapur, Gio C. Suh, Nicholas A. Geisse, Evelyn R. Wang, Clara Hua, Holly A. Huber, Alyssa A. Viscio, Joon Young Kim, Julie B. Strickland, Megan L. McCain. Prolonged Culture of Aligned Skeletal Myotubes on Micromolded Gelatin Hydrogels. Scientific Reports, (2016). DOI: 10.1038/srep28855.