Neurocientíficos de la Universidad Duke (Carolina del Norte, EE.UU.) han desarrollado una interfaz cerebro-máquina (IMC) que permite a los primates utilizar sólo sus pensamientos para moverse con una silla de ruedas robótica.
La IMC utiliza señales de cientos de neuronas registradas simultáneamente en dos regiones del cerebro de los monos que están involucradas en el movimiento y la sensación. A medida que los animales piensan acerca de cómo moverse hacia su meta -en este caso, un recipiente que contiene uvas frescas- los ordenadores traducen su actividad cerebral en funcionamiento en tiempo real de la silla de ruedas.
La interfaz, que se describe en la revista en línea Scientific Reports, demuestra según la nota de prensa de Duke el potencial futuro para las personas con discapacidad que han perdido la mayor parte del control muscular y la movilidad debido a cuadriplejia o esclerosis latearal amiotrófica, dice el autor principal Miguel Nicolelis, co-director del Centro Duke de Neuroingeniería.
"Para algunas personas con discapacidad grave, incluso guiñar les es imposible", dice Nicolelis. "Para ellos, el uso de una silla de ruedas o un dispositivo controlado por medidas no invasivas como un electroencefalograma (un dispositivo que monitoriza las ondas cerebrales a través de electrodos en el cuero cabelludo) puede no ser suficiente. Se demuestra claramente que si tiene implantes intracraneales, obtiene un mejor control de una silla de ruedas que con los dispositivos no invasivos".
Los científicos comenzaron los experimentos en 2012, implantando cientos de microfilamentos delgados como un cabello en las regiones premotora y somatosensorial de los cerebros de dos macacos rhesus. Entrenaron a los animales moviendo de forma pasiva la silla hacia su objetivo, el recipiente con uvas. Durante esta fase de entrenamiento, los científicos registraron la actividad eléctrica a gran escala del cerebro de los primates. Luego, programaron un sistema informático para traducir las señales del cerebro en comandos de motor digitales que controlaban los movimientos de la silla de ruedas.
A medida que los monos aprendieron a controlar la silla de ruedas sólo con el pensamiento, se hizo más eficiente la navegación hacia las uvas y completaron los ensayos más rápido, cuenta Nicolelis.
La IMC utiliza señales de cientos de neuronas registradas simultáneamente en dos regiones del cerebro de los monos que están involucradas en el movimiento y la sensación. A medida que los animales piensan acerca de cómo moverse hacia su meta -en este caso, un recipiente que contiene uvas frescas- los ordenadores traducen su actividad cerebral en funcionamiento en tiempo real de la silla de ruedas.
La interfaz, que se describe en la revista en línea Scientific Reports, demuestra según la nota de prensa de Duke el potencial futuro para las personas con discapacidad que han perdido la mayor parte del control muscular y la movilidad debido a cuadriplejia o esclerosis latearal amiotrófica, dice el autor principal Miguel Nicolelis, co-director del Centro Duke de Neuroingeniería.
"Para algunas personas con discapacidad grave, incluso guiñar les es imposible", dice Nicolelis. "Para ellos, el uso de una silla de ruedas o un dispositivo controlado por medidas no invasivas como un electroencefalograma (un dispositivo que monitoriza las ondas cerebrales a través de electrodos en el cuero cabelludo) puede no ser suficiente. Se demuestra claramente que si tiene implantes intracraneales, obtiene un mejor control de una silla de ruedas que con los dispositivos no invasivos".
Los científicos comenzaron los experimentos en 2012, implantando cientos de microfilamentos delgados como un cabello en las regiones premotora y somatosensorial de los cerebros de dos macacos rhesus. Entrenaron a los animales moviendo de forma pasiva la silla hacia su objetivo, el recipiente con uvas. Durante esta fase de entrenamiento, los científicos registraron la actividad eléctrica a gran escala del cerebro de los primates. Luego, programaron un sistema informático para traducir las señales del cerebro en comandos de motor digitales que controlaban los movimientos de la silla de ruedas.
A medida que los monos aprendieron a controlar la silla de ruedas sólo con el pensamiento, se hizo más eficiente la navegación hacia las uvas y completaron los ensayos más rápido, cuenta Nicolelis.
Señales
Además de observar las señales del cerebro que correspondían al movimiento de rotación y de traslación, el equipo de Duke también descubrió que las señales del cerebro de los primates mostraban signos de que estaban contemplando la taza de uvas a distancia.
"No era una señal que estuviera presente al inicio de la formación, sino que surgió como un efecto de que los monos se convirtieran en expertos en la tarea", dice Nicolelis. "Eso fue una sorpresa. Demuestra la enorme flexibilidad del cerebro para asimilar un dispositivo, en este caso una silla de ruedas, y asimilar a su vez las relaciones espaciales de ese dispositivo con el mundo que lo rodea".
Los ensayos midieron la actividad de cerca de 300 neuronas de cada uno de los dos monos. El laboratorio de Nicolelis había informado anteriormente de la posibilidad de grabar hasta 2.000 neuronas utilizando la misma técnica.
El equipo espera ahora ampliar el experimento mediante el registro de más señales neuronales para aumentar la exactitud y fidelidad de la IMC de los primates antes de hacer pruebas con un dispositivo implantado en seres humanos. Además de Nicolelis, los autores del estudio son Sankaranarayani Rajangam; Po-He Tseng; Allen Yin; Gary Lehew; David Schwarz; y Mikhail A. Lebedev.
Además de observar las señales del cerebro que correspondían al movimiento de rotación y de traslación, el equipo de Duke también descubrió que las señales del cerebro de los primates mostraban signos de que estaban contemplando la taza de uvas a distancia.
"No era una señal que estuviera presente al inicio de la formación, sino que surgió como un efecto de que los monos se convirtieran en expertos en la tarea", dice Nicolelis. "Eso fue una sorpresa. Demuestra la enorme flexibilidad del cerebro para asimilar un dispositivo, en este caso una silla de ruedas, y asimilar a su vez las relaciones espaciales de ese dispositivo con el mundo que lo rodea".
Los ensayos midieron la actividad de cerca de 300 neuronas de cada uno de los dos monos. El laboratorio de Nicolelis había informado anteriormente de la posibilidad de grabar hasta 2.000 neuronas utilizando la misma técnica.
El equipo espera ahora ampliar el experimento mediante el registro de más señales neuronales para aumentar la exactitud y fidelidad de la IMC de los primates antes de hacer pruebas con un dispositivo implantado en seres humanos. Además de Nicolelis, los autores del estudio son Sankaranarayani Rajangam; Po-He Tseng; Allen Yin; Gary Lehew; David Schwarz; y Mikhail A. Lebedev.
Referencia bibliográfica:
Sankaranarayani Rajangam, Po-He Tseng, Allen Yin, Gary Lehew, David Schwarz, Mikhail A. Lebedev & Miguel A. L. Nicolelis: Wireless Cortical Brain-Machine Interface for Whole-Body Navigation in Primates. Scientific Reports (2016). DOI: 10.1038/srep22170.
Sankaranarayani Rajangam, Po-He Tseng, Allen Yin, Gary Lehew, David Schwarz, Mikhail A. Lebedev & Miguel A. L. Nicolelis: Wireless Cortical Brain-Machine Interface for Whole-Body Navigation in Primates. Scientific Reports (2016). DOI: 10.1038/srep22170.