Un equipo internacional de científicos ha desarrollado un nuevo sistema químico cuya estructura nanoscópica se inspira en la estructura reticular de las neuronas.
El sistema, publicado en Nature Communications, está formado por anillos interconectados mediante estructuras tubulares y tiene una gran capacidad para transportar electrones, lo que lo convierte en un excelente nanoconductor eléctrico.
La red se forma mediante un proceso de autoensamblaje químico de pequeños bloques moleculares diseñados en el laboratorio de Arjan Kleij, en el Instituto Catalán de Investigación Química en Tarragona, que informa del hallazgo en una nota de prensa.
Estos bloques moleculares interaccionan no covalentemente unos con otros y dan lugar a la estructura reticular capaz de transportar información a través de las conexiones químicas. Además, los científicos son capaces de incorporar distintos metales en los bloques moleculares para así modificar las propiedades electroquímicas, magnéticas u optoelectrónicas de la red.
El sistema, publicado en Nature Communications, está formado por anillos interconectados mediante estructuras tubulares y tiene una gran capacidad para transportar electrones, lo que lo convierte en un excelente nanoconductor eléctrico.
La red se forma mediante un proceso de autoensamblaje químico de pequeños bloques moleculares diseñados en el laboratorio de Arjan Kleij, en el Instituto Catalán de Investigación Química en Tarragona, que informa del hallazgo en una nota de prensa.
Estos bloques moleculares interaccionan no covalentemente unos con otros y dan lugar a la estructura reticular capaz de transportar información a través de las conexiones químicas. Además, los científicos son capaces de incorporar distintos metales en los bloques moleculares para así modificar las propiedades electroquímicas, magnéticas u optoelectrónicas de la red.
Nuevo material
El equipo de investigación, junto con sus colaboradores en Alemania, Portugal y Rusia, ha explorado la posibilidad de utilizar este nuevo sistema químico para transmitir información eléctrica.
Para ello utilizan nanotubos de carbono que al estar en contacto con el sistema se alinean en torno a los anillos y los conectores tubulares permitiendo el paso de la corriente eléctrica por la red
Este nuevo nanomaterial conductor resultante de la aplicación del sistema de Kleij en nanotubos de carbono, permitiría diseñar innovadores dispositivos electrónicos más potentes y de menor tamaño.
Entre las aplicaciones más inmediatas se encuentran la construcción de innovadores electrodos, nuevos circuitos nanoelectrónicos y sensores.
El equipo de investigación continúa estudiando el sistema y su aplicación en polímeros para generar materiales semiconductores plásticos que se puedan utilizar en pantallas de tabletas y móviles o incluso tejidos con determinadas capacidades térmicas.
El equipo de investigación, junto con sus colaboradores en Alemania, Portugal y Rusia, ha explorado la posibilidad de utilizar este nuevo sistema químico para transmitir información eléctrica.
Para ello utilizan nanotubos de carbono que al estar en contacto con el sistema se alinean en torno a los anillos y los conectores tubulares permitiendo el paso de la corriente eléctrica por la red
Este nuevo nanomaterial conductor resultante de la aplicación del sistema de Kleij en nanotubos de carbono, permitiría diseñar innovadores dispositivos electrónicos más potentes y de menor tamaño.
Entre las aplicaciones más inmediatas se encuentran la construcción de innovadores electrodos, nuevos circuitos nanoelectrónicos y sensores.
El equipo de investigación continúa estudiando el sistema y su aplicación en polímeros para generar materiales semiconductores plásticos que se puedan utilizar en pantallas de tabletas y móviles o incluso tejidos con determinadas capacidades térmicas.
Referencia bibliográfica:
Martha V. Escárcega-Bobadilla, Gustavo A. Zelada-Guillén, Sergey V. Pyrlin, Marcin Wegrzyn, Marta M.D. Ramos, Enrique Giménez, Andrew Stewart, Gerhard Maier, Arjan W. Kleij. Nanorings and rods interconnected by self-assembly mimicking an artificial network of neurons. Nature Communications (2013). DOI:10.1038/ncomms3648.
Martha V. Escárcega-Bobadilla, Gustavo A. Zelada-Guillén, Sergey V. Pyrlin, Marcin Wegrzyn, Marta M.D. Ramos, Enrique Giménez, Andrew Stewart, Gerhard Maier, Arjan W. Kleij. Nanorings and rods interconnected by self-assembly mimicking an artificial network of neurons. Nature Communications (2013). DOI:10.1038/ncomms3648.