El dispositivo transparente se puede poner en una lente de contacto para medir la presión intraocular en enfermos con glaucoma. Imagen: Salvatore et al. Fuente: SINC.
Un equipo de científicos del instituto suizo ETH de Zúrich ha presentado esta semana en la revista Nature Communications un procedimiento para transferir dispositivos electrónicos muy delgados y flexibles a casi cualquier tipo de superficie. Los circuitos se pueden, incluso, envolver en cabellos humanos sin dejar de funcionar.
El método consiste en fabricar una ‘oblea’ con distintas capas: una base de silicio, una lámina de alcohol de polivinilo y otra encima de parileno, una sustancia transparente y biocompatible que lleva los componentes electrónicos.
Después, la capa de alcohol se diluye en agua, se desprende la base de silicio y queda disponible el parileno con los transistores para ser utilizados en superficies tan variadas como tejidos textiles, hojas de plantas o piel humana.
“El parileno que empleamos como sustrato tiene tan solo una micra de espesor, pero se puede depositar a gran escala”, destaca a SINC Giovanni Salvatore, el autor principal del trabajo.
El método consiste en fabricar una ‘oblea’ con distintas capas: una base de silicio, una lámina de alcohol de polivinilo y otra encima de parileno, una sustancia transparente y biocompatible que lleva los componentes electrónicos.
Después, la capa de alcohol se diluye en agua, se desprende la base de silicio y queda disponible el parileno con los transistores para ser utilizados en superficies tan variadas como tejidos textiles, hojas de plantas o piel humana.
“El parileno que empleamos como sustrato tiene tan solo una micra de espesor, pero se puede depositar a gran escala”, destaca a SINC Giovanni Salvatore, el autor principal del trabajo.
Potenciales aplicaciones
“Podemos fabricar dispositivos de una micra, pero potencialmente se podrían alcanzar tamaños todavía más pequeños, lo que permitiría sobrepasar los 100 MHz (como los que usan las etiquetas RFDI o de identificación por radiofrecuencia)”, añade el investigador.
Según sus promotores, la versatilidad de esta sencilla técnica abre nuevas posibilidades en el campo de los biosensores, especialmente en aquellos que miden parámetros sobre la salud.
“Proveemos su aplicación en lentes de contacto inteligentes que servirán para controlar la presión intraocular en pacientes con glaucoma”, apunta Salvatore.
“Pero además –añade–, esta técnica se podría usar para implantar sensores en la piel o en otros tejidos animales o vegetales, con conexiones inalámbricas, así como en el desarrollo de células solares ultraligeras que proporcionen energía a los dispositivos portátiles”.
“Podemos fabricar dispositivos de una micra, pero potencialmente se podrían alcanzar tamaños todavía más pequeños, lo que permitiría sobrepasar los 100 MHz (como los que usan las etiquetas RFDI o de identificación por radiofrecuencia)”, añade el investigador.
Según sus promotores, la versatilidad de esta sencilla técnica abre nuevas posibilidades en el campo de los biosensores, especialmente en aquellos que miden parámetros sobre la salud.
“Proveemos su aplicación en lentes de contacto inteligentes que servirán para controlar la presión intraocular en pacientes con glaucoma”, apunta Salvatore.
“Pero además –añade–, esta técnica se podría usar para implantar sensores en la piel o en otros tejidos animales o vegetales, con conexiones inalámbricas, así como en el desarrollo de células solares ultraligeras que proporcionen energía a los dispositivos portátiles”.
Referencia bibliográfica:
Giovanni A. Salvatore, Niko Münzenrieder, Thomas Kinkeldei, Luisa Petti, Christoph Zysset, Ivo Strebel, Lars Büthe, Gerhard Tröster. Wafer-scale design of lightweight and transparent electronics that wraps around hairs. Nature Communications (2014). DOI: 10.1038/ncomms3982.
Giovanni A. Salvatore, Niko Münzenrieder, Thomas Kinkeldei, Luisa Petti, Christoph Zysset, Ivo Strebel, Lars Büthe, Gerhard Tröster. Wafer-scale design of lightweight and transparent electronics that wraps around hairs. Nature Communications (2014). DOI: 10.1038/ncomms3982.