Si la NASA alguna vez llega a establecer una base permanente en la Luna, los científicos y astronautas que allí vivan tendrán que ser capaces de hacer un seguimiento lo más preciso y directo posible de los miembros de la expedición y de sus vehículos lunares. La NASA ha encargado parte de este trabajo a un equipo multidisciplinar de ingenieros de la Universidad de Houston, en los Estados Unidos.
Como recuerda uno los integrantes de este equipo, Heider Malki, en un comunicado de la propia Universidad, si la tripulación siempre se queda cerca del lugar donde alunizaron, la recogida de información va a ser muy limitada, por lo que se van a ver obligados a recorrer distancias más largas. “Pero, ¿qué pasaría si se alejan y se pierden? En la Tierra, tenemos nuestra disposición los GPS, pero en la una no disponemos de esa posibilidad”, asegura.
Malki y su grupo están ayudando a la NASA a crear un sistema de navegación que permita a los exploradores contactar con su base lunar, encontrar el camino de vuelta y comunicarse entre sí.
El primer paso de esta investigación es identificar qué sensores irían mejor en un ambiente como el lunar. Se trata de que en todo momento las líneas de comunicación han permanecer claras y proporcionar direcciones con casi total exactitud.
Varios sensores
En la actualidad la industria y las universidades están desarrollando más de una docena de sensores de navegación, pero no está claro cuál va a funcionar mejor. Por eso, parte del trabajo de este equipo es generar modelos matemáticos con datos proporcionados por los “candidatos” más prometedores. En concreto, un algoritmo ayudará a determinar la exactitud de navegación sobre la Luna que la NASA puede esperar conseguir.
Lo que parece claro es que, en nuestro satélite, los astronautas y exploradores necesitarán varios sensores, incluidos unos que funcionarán como repetidores de telefonía móvil, odómetros instalados en las ruedas de los vehículos e incluso satélites parecidos a los que se usan en la Tierra para que funcionen los GPS.
“Estamos tratando de unir las medidas proporcionadas por cada uno de estos sensores”, comenta Steve Provence, un ingeniero de la NASA que trabaja en este proyecto. “El primer gran tema a abordar es el timing. Cada sensor nos dará actualizaciones a diferentes intervalos. Algunos lo harán una vez cada segundo, como el GPS, mientras que otros lo harán más rápido o más lento. Puede parecer un trabajo menor, pero combinar todas estas mediciones es complicado”
El mismo reto supone mantener a los astronautas informados en el caso de que alguno de estos sensores no estén disponibles. Si viajan hacia un cráter, por ejemplo, su visión de las torres de navegación se oscurecerá y perderán el contacto con esos sensores, asegura Provence.
Los ingenieros consideran que los sistemas de navegación que se vayan a usar en la Luna tienen que ser más robustos de lo normal y tienen que adaptarse a las situaciones y no dejar de proporcionar una buena información.
El equipo de la Universidad de Houston va a clasificar varios sensores en función de su rango, su fiabilidad, su exactitud, su consumo de energía y su coste de procesado informático. Usando los sensores seleccionados, desarrollarán algoritmos de estimación para proporcionar un sistema de navegación lunar lo más exacto posible.
Redes neuronales
Los ingenieros involucrados en la investigación son expertos en varias posibilidades. Una de ellas son las “redes neuronales”, o modelos computacionales hechos a partir de neuronas artificiales. Las redes son adaptables y sus operaciones pueden cambiar si la información que reciben indica que así lo hagan.
“Las redes neuronales tratan de imitar sistemas biológicos”, dice Malki. “Del mismo modo que nosotros aprendemos por el método de prueba-error. Las redes neuronales funcionan de un modo muy parecido. Presentándoles ejemplos, tratamos de que las redes aprendan”.
Una vez hecho esto, lo testan con nuevos datos para ver si pueden producir resultados similares, comenta Malki, que ya había trabajado antes con redes neuronales en un proyecto que trataba de controlar las vibraciones de los famosos helicópteros de combate Blackhawk.
Como recuerda uno los integrantes de este equipo, Heider Malki, en un comunicado de la propia Universidad, si la tripulación siempre se queda cerca del lugar donde alunizaron, la recogida de información va a ser muy limitada, por lo que se van a ver obligados a recorrer distancias más largas. “Pero, ¿qué pasaría si se alejan y se pierden? En la Tierra, tenemos nuestra disposición los GPS, pero en la una no disponemos de esa posibilidad”, asegura.
Malki y su grupo están ayudando a la NASA a crear un sistema de navegación que permita a los exploradores contactar con su base lunar, encontrar el camino de vuelta y comunicarse entre sí.
El primer paso de esta investigación es identificar qué sensores irían mejor en un ambiente como el lunar. Se trata de que en todo momento las líneas de comunicación han permanecer claras y proporcionar direcciones con casi total exactitud.
Varios sensores
En la actualidad la industria y las universidades están desarrollando más de una docena de sensores de navegación, pero no está claro cuál va a funcionar mejor. Por eso, parte del trabajo de este equipo es generar modelos matemáticos con datos proporcionados por los “candidatos” más prometedores. En concreto, un algoritmo ayudará a determinar la exactitud de navegación sobre la Luna que la NASA puede esperar conseguir.
Lo que parece claro es que, en nuestro satélite, los astronautas y exploradores necesitarán varios sensores, incluidos unos que funcionarán como repetidores de telefonía móvil, odómetros instalados en las ruedas de los vehículos e incluso satélites parecidos a los que se usan en la Tierra para que funcionen los GPS.
“Estamos tratando de unir las medidas proporcionadas por cada uno de estos sensores”, comenta Steve Provence, un ingeniero de la NASA que trabaja en este proyecto. “El primer gran tema a abordar es el timing. Cada sensor nos dará actualizaciones a diferentes intervalos. Algunos lo harán una vez cada segundo, como el GPS, mientras que otros lo harán más rápido o más lento. Puede parecer un trabajo menor, pero combinar todas estas mediciones es complicado”
El mismo reto supone mantener a los astronautas informados en el caso de que alguno de estos sensores no estén disponibles. Si viajan hacia un cráter, por ejemplo, su visión de las torres de navegación se oscurecerá y perderán el contacto con esos sensores, asegura Provence.
Los ingenieros consideran que los sistemas de navegación que se vayan a usar en la Luna tienen que ser más robustos de lo normal y tienen que adaptarse a las situaciones y no dejar de proporcionar una buena información.
El equipo de la Universidad de Houston va a clasificar varios sensores en función de su rango, su fiabilidad, su exactitud, su consumo de energía y su coste de procesado informático. Usando los sensores seleccionados, desarrollarán algoritmos de estimación para proporcionar un sistema de navegación lunar lo más exacto posible.
Redes neuronales
Los ingenieros involucrados en la investigación son expertos en varias posibilidades. Una de ellas son las “redes neuronales”, o modelos computacionales hechos a partir de neuronas artificiales. Las redes son adaptables y sus operaciones pueden cambiar si la información que reciben indica que así lo hagan.
“Las redes neuronales tratan de imitar sistemas biológicos”, dice Malki. “Del mismo modo que nosotros aprendemos por el método de prueba-error. Las redes neuronales funcionan de un modo muy parecido. Presentándoles ejemplos, tratamos de que las redes aprendan”.
Una vez hecho esto, lo testan con nuevos datos para ver si pueden producir resultados similares, comenta Malki, que ya había trabajado antes con redes neuronales en un proyecto que trataba de controlar las vibraciones de los famosos helicópteros de combate Blackhawk.