Algunas regiones de la corteza visual del cerebro, en verde en la imagen, pueden ser reorganizadas para pasar a procesar señales sonoras. Fuente: MIT.
Hace aproximadamente una década, el estudio del cerebro de individuos invidentes reveló que las conexiones neuronales de una región cerebral dedicada a procesar imágenes visuales pueden reestructurarse para que dicha región pase a interpretar otro tipo de señales: la información táctil (por ejemplo, la que se recibe a través de los dedos cuando se lee en Braille).
Experimentos posteriores revelaron un fenómeno similar en otras áreas del cerebro. Sin embargo, hasta el momento, los científicos no habían podido responder a la siguiente cuestión: ¿puede el cerebro reorganizar sus conexiones neuronales en cualquier momento de la vida o sólo en los primeros años de vida?
Ahora, un equipo de neurocientíficos del Instituto Tecnológico de Massachussets (MIT), en colaboración con investigadores del Beth Israel Deaconess Medical Center, ha recopilado por vez primera evidencias de que es más fácil que el cerebro se reestructure en los primeros años de vida que posteriormente.
Reorganización en la corteza visual
Según publica el MIT en un comunicado, en concreto, los neurocientíficos han podido constatar que una pequeña parte de la corteza visual del cerebro que procesa la información sobre el movimiento se reorganizó solamente en los cerebros de individuos que habían nacido ciegos, y no en los cerebros de otras personas que habían quedado ciegas después de nacer, en distintos momentos de su vida.
Este hallazgo, del que hablan los autores de la investigación en la revista Current Biology, vierte luz sobre la estructuración del cerebro durante los primeros años de vida, y podría ayudar a los científicos a comprender cómo optimizar la capacidad del cerebro para reorganizar sus conexiones neuronales, en edades posteriores.
Las neurocientíficos del MIT Marina Bedny y Rebeca Saxe, junto a un grupo de colaboradores, investigaron, en concreto, un área del cerebro conocida como área visual MT (temporal media) o V5.
Cuando esta región, que forma parte de la corteza visual cerebral, no desempeña bien su función en ambos hemisferios del cerebro, los individuos son incapaces de percibir el movimiento de cualquier escena visual. Por ejemplo, si alguien echa agua en un vaso ante sus ojos, ellos sólo ven una escena estática, congelada, del chorro de agua que cae.
Cambio de función
Cuando la MT funciona bien pero las personas son ciegas, esta región deja de procesar las señales visuales y pasa a procesar señales visuales. Estudios previos habían demostrado este cambio, pero no habían establecido las diferencias en el proceso de transformación entre ciegos de nacimiento y personas ciegas por cualquier otra causa.
Los científicos reunieron a tres grupos de personas (videntes, ciegos de nacimiento y personas que se habían quedado ciegas en algún momento de sus vidas (de los nueve años de edad en adelante).
Utilizando una tecnología conocida como exploración de resonancia magnética funcional (fMRI), que permite mostrar en imágenes las regiones cerebrales que ejecutan una tarea determinada, los investigadores probaron si el área visual MT de todos los participantes respondía a sonidos en movimiento (por ejemplo, unos pasos que se acercan).
Según Bedny, los resultados fueron claros: la MT sólo reaccionó a estos movimientos en el caso de las personas con ceguera congénita, pero no en el caso de los videntes ni en el del resto de los ciegos.
Experimentos posteriores revelaron un fenómeno similar en otras áreas del cerebro. Sin embargo, hasta el momento, los científicos no habían podido responder a la siguiente cuestión: ¿puede el cerebro reorganizar sus conexiones neuronales en cualquier momento de la vida o sólo en los primeros años de vida?
Ahora, un equipo de neurocientíficos del Instituto Tecnológico de Massachussets (MIT), en colaboración con investigadores del Beth Israel Deaconess Medical Center, ha recopilado por vez primera evidencias de que es más fácil que el cerebro se reestructure en los primeros años de vida que posteriormente.
Reorganización en la corteza visual
Según publica el MIT en un comunicado, en concreto, los neurocientíficos han podido constatar que una pequeña parte de la corteza visual del cerebro que procesa la información sobre el movimiento se reorganizó solamente en los cerebros de individuos que habían nacido ciegos, y no en los cerebros de otras personas que habían quedado ciegas después de nacer, en distintos momentos de su vida.
Este hallazgo, del que hablan los autores de la investigación en la revista Current Biology, vierte luz sobre la estructuración del cerebro durante los primeros años de vida, y podría ayudar a los científicos a comprender cómo optimizar la capacidad del cerebro para reorganizar sus conexiones neuronales, en edades posteriores.
Las neurocientíficos del MIT Marina Bedny y Rebeca Saxe, junto a un grupo de colaboradores, investigaron, en concreto, un área del cerebro conocida como área visual MT (temporal media) o V5.
Cuando esta región, que forma parte de la corteza visual cerebral, no desempeña bien su función en ambos hemisferios del cerebro, los individuos son incapaces de percibir el movimiento de cualquier escena visual. Por ejemplo, si alguien echa agua en un vaso ante sus ojos, ellos sólo ven una escena estática, congelada, del chorro de agua que cae.
Cambio de función
Cuando la MT funciona bien pero las personas son ciegas, esta región deja de procesar las señales visuales y pasa a procesar señales visuales. Estudios previos habían demostrado este cambio, pero no habían establecido las diferencias en el proceso de transformación entre ciegos de nacimiento y personas ciegas por cualquier otra causa.
Los científicos reunieron a tres grupos de personas (videntes, ciegos de nacimiento y personas que se habían quedado ciegas en algún momento de sus vidas (de los nueve años de edad en adelante).
Utilizando una tecnología conocida como exploración de resonancia magnética funcional (fMRI), que permite mostrar en imágenes las regiones cerebrales que ejecutan una tarea determinada, los investigadores probaron si el área visual MT de todos los participantes respondía a sonidos en movimiento (por ejemplo, unos pasos que se acercan).
Según Bedny, los resultados fueron claros: la MT sólo reaccionó a estos movimientos en el caso de las personas con ceguera congénita, pero no en el caso de los videntes ni en el del resto de los ciegos.
Rebeca Saxe, una de las autoras de la investigación. Fuente: MIT.
Este resultado sugiere que, en individuos que se han quedado ciegos años después de nacer, las señales visuales que recibieron en los primeros años de vida propiciaron un desarrollo normal de la MT, que por tanto tendría una función de procesamiento de señales visuales y no sonoras el resto de sus vidas.
Sin embargo, en los ciegos congénitos o de nacimiento, que nunca recibieron señal visual alguna, la región MT se habría encargado de procesar las señales auditivas, después del nacimiento.
Estructuración en los primeros años
Otro aspecto importante revelado por la investigación de Bedny y Saxe fue el siguiente: en los ciegos congénitos se constató una comunicación aumentada (mayor número de conexiones neuronales) entre el área visual MT y la corteza prefrontal del cerebro. Esta conexión aumentada podría explicar el cambio en la región MT para pasar a procesar información auditiva.
Los investigadores creen que los resultados obtenidos sugieren que es en los primeros años de vida cuando se define cómo funcionará el cerebro. Bedny añade: “eso no quiere decir que las experiencias posteriores no puedan alterar ciertas cosas, pero la estructuración se da más fácilmente al principio de la vida”.
Conocer a fondo cómo se produce la organización del cerebro en esas edades, cómo se estructuran las conexiones neuronales al inicio del desarrollo de cada persona, podría enseñar a los científicos la manera de reestructurar el cerebro en etapas posteriores.
Si se alcanza ese conocimiento, tal vez algún día, se pueda reenseñar a los cerebros de pacientes ciegos a procesar señales visuales. La cuestión no resuelta que queda es averiguar si el cerebro será capaz de reaprender.
El cerebro adulto también cambia
Aunque la organización de las conexiones neuronales del cerebro se produzca más fácilmente en los primeros años de vida, tal y como parece establecer el hallazgo del MIT, el cerebro no es un órgano estático, ni siquiera en la edad adulta.
De hecho, estudios realizados en los últimos tiempos han demostrado que el cerebro adulto se ve continuamente modificado por las experiencias. Una de estas investigaciones fue la realizada este año por los científicos de la Rockefeller University de Estados Unidos, Charles D. Gilbert, Arthur Ross y Janet Ross.
Investigando con ratones, estos científicos pudieron observar que privar a estos animales de sus vibrisas (bigotes que les sirven como elemento sensorial táctil o para percibir obstáculos en la oscuridad) provocaba cambios duraderos en las relaciones entre las neuronas de la corteza somatosensorial del cerebro.
Según los científicos, estos resultados sugerirían que la topografía cerebral de individuos adultos puede reconfigurarse como consecuencia de la privación sensorial, lo que a su vez significa que los circuitos neuronales van cambiando continuamente como respuesta a la experiencia, y a lo largo de toda la vida.
Por otro lado, experimentos realizados por el neurocientífico Michael Merzenich y sus colaboradores también han demostrado que los mapas sensoriales y motores de la corteza cerebral pueden modificarse con la experiencia.
Estos cambios se deben a la “plasticidad de las conexiones en el sistema nervioso” tal y como explicó recientemente en Tendencias21 el neurólogo Francisco Rubia.
Sin embargo, en los ciegos congénitos o de nacimiento, que nunca recibieron señal visual alguna, la región MT se habría encargado de procesar las señales auditivas, después del nacimiento.
Estructuración en los primeros años
Otro aspecto importante revelado por la investigación de Bedny y Saxe fue el siguiente: en los ciegos congénitos se constató una comunicación aumentada (mayor número de conexiones neuronales) entre el área visual MT y la corteza prefrontal del cerebro. Esta conexión aumentada podría explicar el cambio en la región MT para pasar a procesar información auditiva.
Los investigadores creen que los resultados obtenidos sugieren que es en los primeros años de vida cuando se define cómo funcionará el cerebro. Bedny añade: “eso no quiere decir que las experiencias posteriores no puedan alterar ciertas cosas, pero la estructuración se da más fácilmente al principio de la vida”.
Conocer a fondo cómo se produce la organización del cerebro en esas edades, cómo se estructuran las conexiones neuronales al inicio del desarrollo de cada persona, podría enseñar a los científicos la manera de reestructurar el cerebro en etapas posteriores.
Si se alcanza ese conocimiento, tal vez algún día, se pueda reenseñar a los cerebros de pacientes ciegos a procesar señales visuales. La cuestión no resuelta que queda es averiguar si el cerebro será capaz de reaprender.
El cerebro adulto también cambia
Aunque la organización de las conexiones neuronales del cerebro se produzca más fácilmente en los primeros años de vida, tal y como parece establecer el hallazgo del MIT, el cerebro no es un órgano estático, ni siquiera en la edad adulta.
De hecho, estudios realizados en los últimos tiempos han demostrado que el cerebro adulto se ve continuamente modificado por las experiencias. Una de estas investigaciones fue la realizada este año por los científicos de la Rockefeller University de Estados Unidos, Charles D. Gilbert, Arthur Ross y Janet Ross.
Investigando con ratones, estos científicos pudieron observar que privar a estos animales de sus vibrisas (bigotes que les sirven como elemento sensorial táctil o para percibir obstáculos en la oscuridad) provocaba cambios duraderos en las relaciones entre las neuronas de la corteza somatosensorial del cerebro.
Según los científicos, estos resultados sugerirían que la topografía cerebral de individuos adultos puede reconfigurarse como consecuencia de la privación sensorial, lo que a su vez significa que los circuitos neuronales van cambiando continuamente como respuesta a la experiencia, y a lo largo de toda la vida.
Por otro lado, experimentos realizados por el neurocientífico Michael Merzenich y sus colaboradores también han demostrado que los mapas sensoriales y motores de la corteza cerebral pueden modificarse con la experiencia.
Estos cambios se deben a la “plasticidad de las conexiones en el sistema nervioso” tal y como explicó recientemente en Tendencias21 el neurólogo Francisco Rubia.