Tendencias 21
   




Aún no se sabe si el bosón encontrado es el de Higgs o sólo uno muy parecido

La clave es el espín, una característica de las partículas elementales y compuestas y de los núcleos atómicos


Pese a toda la repercusión que tuvo su descubrimiento, el llamado bosón de Higgs es en realidad una "partícula parecida a un Higgs". Para asegurarse de que es exactamente eso, los científicos del CERN aún están determinando su espín, una propiedad de las partículas elementales y compuestas, y de los nucleos atómicos. De tener valor 0, sería en efecto el bosón de Higgs (al menos prácticamente), mientras que si tiene valor 2 sería una partícula distinta, relacionada con la gravedad.


SINC/T21
08/03/2013

Representación artística de dos objetos, con espín 5/2 (izquierda) y 2 (derecha). Imagen: Julian Voss-Andreae. Fuente: Wikipedia.
Representación artística de dos objetos, con espín 5/2 (izquierda) y 2 (derecha). Imagen: Julian Voss-Andreae. Fuente: Wikipedia.
La semana pasada el director del CERN, Rolf Heuer, explicaba a SINC que pronto se podría decir que la partícula que descubrieron el año pasado es un autentico bosón de Higgs, y no sólo una parecida, un Higgs-like boson, que es lo que único está confirmado hasta ahora.

Pero habrá que tener un poco más de paciencia, según los físicos reunidos estos días en La Thuile (Italia). La clave está en confirmar que una propiedad de la partícula, su espín, sea cero.

"Hasta que podamos delimitar con seguridad su espín, la partícula seguirá siendo un "bosón parecido a un higgs"–”, subraya el director de Investigación del Laboratorio Europeo de Física de Partículas (CERN), Sergio Bertolucci, “y solo cuando sepamos que esa propiedad es cero podremos llamarlo un bosón de Higgs”.

La declaración se refiere a la famosa partícula descubierta el año pasado en ese centro y se ha facilitado durante los encuentros científicos de Moriond que se están celebrando en La Thuile (Italia). La semana pasada el director del CERN, Rolf Heuer, ya habló sobre este asunto en la Universidad de Oviedo y expresó su confianza en que pronto se pueda confirmar que el espín sea 0.

Ahora, los científicos insisten en que se requieren más análisis antes de ofrecer una afirmación definitiva sobre la partícula, aunque es verdad que los datos apuntan cada vez más a que es un bosón de Higgs. La clave para su identificación positiva es ver sus características y cómo interacciona con otras partículas.

La propiedad esencial es el espín o momento angular –o de rotación– intrínseco. Si tiene espín nulo, entonces es un higgs, como apuntan con fuerza todos los datos hasta el momento. Pero si no, es algo diferente, posiblemente relacionado con la forma en que trabaja la gravedad.

Hasta ahora, todas las partículas elementales descubiertas tienen un espín de ½ (fermiones como el electrón) o 1 (bosones como el fotón). Dos partículas hipotéticas tienen distinto espín: el gravitón (espín 2) y el bosón de Higgs (espín 0). Hay que descartar, por tanto, que la particula descubierta el año pasado sea algo parecido a un gravitón.

El espín y la baraja

El concepto de espín no es fácil de entender. Según el científico Stephen Hawking en su libro Breve Historia del Tiempo “lo que nos dice realmente el espín de una partícula es cómo se muestra desde distintas direcciones”. El espín sólo lo tienen las partículas elementales (como el electrón), las compuestas (como el protón) y los núcleos atómicos.

Una partícula de espín 0, como un bosón de Higgs, es como un punto: parece la misma desde todas las direcciones. Por el contrario, si su valor es 1 es como una flecha: parece diferente desde direcciones distintas y sólo si se gira una vuelta completa –360º– la partícula parece la misma.

El tema se complica con las partículas con espín ½, que no parecen las mismas al girarlas una vuelta. Hay que dar dos vueltas completas para conseguirlo, algo difícil de imaginar.

Por su parte, una partícula de espín 2 –como lo que tratan ahora de descartar los físicos– es como una flecha con dos cabezas: parece la misma si se gira solo media vuelta o 180º. Considerando el campo gravitatorio desde el punto de vista de la mecánica cuántica, la fuerza entre dos partículas materiales se transmite por una partícula de espín 2 que todavía no se ha observado: el gravitón.

Este asunto también lo están investigando los científicos del CERN, que incluso aunque descarten que el nuevo bosón tenga un espín 2 y efectivamente sea 0 como un higgs, todavía tendrán un largo trabajo por delante. El siguiente paso, que puede llevar años, sería confirmar si ese bosón es el largamente buscado del modelo estándar o algo más exótico.



Artículo leído 4130 veces





Nuevo comentario:
Twitter

Los comentarios tienen la finalidad de difundir las opiniones que le merecen a nuestros lectores los contenidos que publicamos. Sin embargo, no está permitido verter comentarios contrarios a las leyes españolas o internacionales, así como tampoco insultos y descalificaciones de otras opiniones. Tendencias21 se reserva el derecho a eliminar los comentarios que considere no se ajustan al tema de cada artículo o que no respeten las normas de uso. Los comentarios a los artículos publicados son responsabilidad exclusiva de sus autores. Tendencias21 no asume ninguna responsabilidad sobre ellos. Los comentarios no se publican inmediatamente, sino que son editados por nuestra Redacción. Tendencias21 podrá hacer uso de los comentarios vertidos por sus lectores para ampliar debates en otros foros de discusión y otras publicaciones.