Primer sondeo del interior magnético de las estrellas

Sus resultados ayudarán a comprender mejor la evolución de estos cuerpos celestes, su vida y su muerte


Por primera vez en la historia, un grupo de astrónomos ha conseguido sondear los campos magnéticos del misterioso interior de las estrellas. Para hacerlo, aplicaron la técnica de la asterosismología que, con ondas de sonido, desvela las propiedades internas de los astros. Sus resultados ayudarán a comprender mejor la evolución de las estrellas, su vida y su muerte. Por Irene Benito.


Irene Benito
28/10/2015

Representación artística ( no a escala) de una estrella gigante roja con fuertes campos magnéticos internos. Fuente: Rafael A. García (SAp CEA), Kyle Augustson (HAO), Jim Fuller (Caltech) & Gabriel Pérez (SMM, IAC). Fotografía de AIA/SDO
Un equipo de astrónomos ha conseguido probar por primera vez los campos magnéticos presentes en las misteriosas regiones del interior de las estrellas. Su estudio ha revelado que estas regiones están fuertemente magnetizadas.

Para alcanzar esta conclusión, los especialistas aplicaron la asterosismología o sismología estelar, una disciplina que estudia la estructura interna de las estrellas usando ondas sonoras que genera oscilaciones en la superficie de los astros.

Estas oscilaciones dan información sobre el interior no observable de estos cuerpos celestes. La asterosismología  funcionaría por tanto “de la misma manera que para obtener imágenes del interior del cuerpo humano en medicina se utilizan ultrasonidos”, explica Jim Fuller, investigador postdoctoral del Caltech de California (EEUU) y director del trabajo, en un comunicado de dicho centro.

Los resultados obtenidos, publicados en la edición del 23 de octubre de Science, ayudarán a los astrónomos a comprender mejor la vida y muerte de las estrellas porque los campos magnéticos determinan las tasas de rotación interior de los astros y dichas tasas tienen efectos espectaculares en cómo las estrellas evolucionan.

Interpretando oscilaciones
 
Hasta ahora, los astrónomos habían podido estudiar los campos magnéticos de las estrellas sólo en su superficie. Para el estudio de los núcleos estelares, solo se habían aplicado modelos computacionales, que simulaban los campos internos. En estos, tiene lugar el proceso de fusión nuclear.

En este nuevo trabajo se ha llegado más lejos, con un tipo de estrella concreto:  las gigantes rojas. Estas fueron las escogidas para analizar porque tienen una estructura física ideal para tal fin: a diferencia de lo que sucede en estrellas como nuestro Sol,  los núcleos de las estrellas gigantes rojas son mucho más densos que los de estrellas más jóvenes. Esto hace que, cuando las ondas sonoras las alcanzan, se transforman en otra clase de ondas, llamadas ondas de gravedad.
 
Esta conversión de las ondas de sonido en ondas de gravedad tiene importantes consecuencias para los pequeños cambios, u oscilaciones, que sufren las gigantes rojas. "Dependiendo de su tamaño y estructura interna, las estrellas oscilan con diferentes patrones", explica Fuller. Los astrónomos observan dichas oscilaciones estelares midiendo cómo su luz varía con el tiempo. Y los patrones de oscilación aportan información sobre el tamaño y la estructura interna de las estrellas.
 
Efecto invernadero magnético
 
Cuando en el núcleo de una estrella hay fuertes campos magnéticos, estos pueden interrumpir la propagación de las ondas de gravedad. Algunas de estas ondas pierden energía y quedan atrapadas dentro del núcleo.
 
Fuller y sus colaboradores han denominado este fenómeno “efecto invernadero magnético”, ya que funciona de manera similar al efecto invernadero de la Tierra, que se da cuando gases presentes en la atmósfera ayudan a atrapar el calor del sol.
 
El resultado de este “efecto invernadero magnético” es un patrón de oscilación “modo dipolo” (en el que un hemisferio de la estrella se vuelve más brillante mientras que el otro se convierte en más oscuro) menor de lo esperado, debido a la captura de las ondas de gravedad en el interior de la gigante roja.
 
Los científicos demostraron que este efecto invernadero magnético era la explicación más probable de este modo dipolo reducido. Sus cálculos revelaron que, en concreto, los campos magnéticos internos de las gigantes rojas eran unos 10 millones de veces más potentes que el campo magnético de la Tierra.

Entender el papel de los campos magnéticos del interior de las estrellas resulta de gran importancia para conocer cómo los astros evolucionan y alcanzan su destino final.

Referencia bibliográfica:

Jim Fuller, Matteo Cantiello, Dennis Stello, Rafael A. Garcia, Lars Bildsten. Asteroseismology can reveal strong internal magnetic fields in red giant stars. Science (2015). DOI: 10.1126/science.aac6933.



Irene Benito
Artículo leído 2782 veces



Más contenidos