Nuevos indicios sugieren que el Universo podría ser fractal

Se consolida una hipótesis científica que podría completar la relatividad general


Las últimas observaciones del Universo sugieren que la materia oscura no se extiende de manera homogénea por el vacío, sino que forma estructuras fractales. Aunque esta teoría tiene ya diez años, las nuevas evidencias ponen de manifiesto su consistencia y plantean que quizá un mecanismo alternativo no descrito por la teoría de la relatividad general posibilitó el desarrollo del Universo desde sus orígenes. Un principio emergente, denominado “relatividad de escala”, sostiene que dicha fractalidad, también atribuida al espacio-tiempo, origina leyes del movimiento que son auto-organizadoras por naturaleza, capaces de producir la evolución de las estructuras de manera también fractal. Por Jean-Paul Baquiast.


Jean-Paul Baquiast
23/03/2007

Galaxia M-51, típico modelo espiral. Nasa.
Hace algún tiempo publicamos un artículo en el que informamos de los resultados de un estudio realizado por un grupo de astrónomos en el marco de la Cosmos Evolution Survey, susceptible de poner en evidencia la existencia de la misteriosa materia oscura que compone el 80% de la masa del Universo.

La imagen tridimensional obtenida parece mostrar que la materia oscura, lejos de repartirse de manera homogénea por el espacio visible, se presenta en realidad bajo la forma de grandes estructuras filamentosas que reproducen la distribución de las galaxias y conjuntos de galaxias, tal como aparece a gran escala en las observaciones astronómicas.

Este hecho podría confirmar la hipótesis según la cual la materia no se repartiría homogéneamente en el Universo, sino a través de formaciones de gran tamaño separadas por espacios de vacío.

Sin embargo, en la actualidad la mayor parte de los astrofísicos defienden la idea de que el universo es homogéneo a gran escala, y que las diferencias no aparecen más que en observaciones realizadas dentro de un radio relativamente reducido.

Pero, como se expone en un artículo de NewScientist titulado Is the universe a fractal? (publicado el 9 de marzo de 2007), un equipo europeo dirigido por el físico Luciano Pietronero, de la Universidad de Roma y del Instituto de Sistemas Complejos, señala, por el contrario, que tanto a gran como a pequeña escala, la estructura del universo (o del espacio-tiempo) es fractal y, por tanto, allí donde se encuentra repite hasta el infinito, y con tamaños distintos, los mismos motivos o patrones.

Hipótesis reciente

En lo que respecta a la materia visible, esta estructura fractal agrupa los sistemas solares, las galaxias, los conjuntos de galaxias y los superconjuntos, cuyo tamaño sobrepasara los mil millones de años luz. En el caso de la materia oscura, el mismo patrón también se repetiría.

Esta hipótesis del universo fractal existe desde hace una década, pero se ha visto reforzada por las observaciones realizadas sobre galaxias cada vez más alejadas y por la observación de la materia oscura.

La última observación de la materia visible hasta la fecha mostró una estructura filamentosa de un diámetro que se estima en más de mil millones de años luz, cuyas redes rodean espacios vacíos de entre 100 y 400 millones de años luz. Este es el Gran Muro del Sloan Digital Sky Survey o Sloan Great Wall.

La mayoría de los físicos suscriben la hipótesis del universo homogéneo (smooth). Piensan que mil millones de años luz constituyen una escala demasiado pequeña como para permitir evoluciones significativas. Más allá de estas escalas temporales, la homogeneidad recupera su validez. Estos científicos se apoyan en el mayor inventario realizado hasta la fecha, el Sloan Digital Sky Survey anteriormente citado, en el que se observa la existencia de una estructura granulosa homogénea, más allá del gran Muro.

Se debe decir que, más allá de las observaciones, siempre difíciles de interpretar y cuyas interpretaciones pueden estar deformadas por ideas preconcebidas, la hipótesis según la cual el universo sería fractal cuestiona la teoría de la relatividad general y la hipótesis según la cual el Universo habría crecido de manera uniforme a partir del Big Bang.

Para la relatividad general, pequeñas fluctuaciones de masa en el Universo naciente habrían provocado condensaciones de materia que dieron forma a la distribución de la materia tal como hoy se observa. La gravedad habría dado lugar a las galaxias y conjuntos de ellas, pero con la expansión habría perdido fuerza. Así, se habrían formado estructuras uniformemente repartidas por todo el espacio-tiempo. La hipotética materia oscura, por su parte, se habría dispersado de una manera más homogénea que la materia visible, sin llegar a formar agrupaciones.

Materia oscura no homogénea

Sin embargo, según Pietronero y sus colegas, la edad del universo, 14 mil millones de años, no es lo suficientemente extensa para que, teniendo en cuenta su expansión, haya podido producir estructuras que superen el tamaño de los 30 millones de años luz. Es más, las observaciones astronómicas a las que nos hemos referido, muestran que la materia oscura en sí misma no sería homogénea y que podría distribuirse en fractales.

Si, por lo tanto, observamos estructuras que se desarrollan como fractales, eso quiere decir que un mecanismo alternativo estuvo presente y permanece activo en la construcción del Universo. Este mecanismo no está descrito por la teoría de la relatividad general.

A la espera de nuevas observaciones que superarán el horizonte de los 650 millones de años luz, y previstas para 2008, proseguirán las observaciones y las hipótesis concernientes a la distribución de la materia visible y oscura, en relación a la naturaleza de ese mecanismo oculto.

El principio de la relatividad de escala

Dicho de otra forma, ¿existiría un modelo fractal del universo opuesto al del universo homogéneo? El astrofísico francés Laurent Nottale, del Observatorio de Paris-Meudon, aporta elementos para responder a esta pregunta en el artículo de NewScientist mencionado.

Desde hace tiempo, Notalle se ha centrado en desarrollar un principio llamado de la relatividad de escala que abarque no sólo el cosmos, sino también el nivel cuántico.

Notalle explica así el principio fundamental de la así llamada relatividad de escala: “se trata de una extensión del principio de relatividad que se puede enunciar de la siguiente forma. Las leyes de la naturaleza deben ser validas en todo sistema de coordenadas, cualquiera que sea su estado de movimiento y escala. Los resultados obtenidos muestran una vez más la extraordinaria eficacia de este principio cuando se trata de limitar o construir las leyes de la física.”

Sobre su método, señala que “el formalismo desarrollado por la relatividad de escala está situado ya en un punto que puede utilizarse tal cual para tratar un problema particular en numerosas situaciones. El camino a seguir está trazado, pero la versión más general de la teoría está en construcción.”

Según señala Nottale en declaraciones a Automates Intelligents, “a partir de la fractalidad del espacio-tiempo (es decir, de su dependencia de la escala), que se justifica como generalización de las teorías geométricas precedentes (el espacio tiempo no es sólo curvo, sino también fractal, tal como generaliza la geometría diferencial, podrían construirse unas leyes del movimiento que son auto-organizadoras por naturaleza. Se trata de la formación y la propia evolución de las estructuras a partir de la fractalidad del espacio-tiempo (sin necesidad de materia oscura excedentaria). Las soluciones obtenidas no son localmente fractales, pero, por el contrario, el carácter constante de escala de la gravitación conlleva a una jerarquía de organización que restablece la característica fractal en una amplia gama de escalas”.

Su punto de vista está más próximo del atribuido a Hogg en el artículo de New Scientist que al de Pietronero. “Pietronero pretende, explica Nottale, que la dimensión fractal es constante cualquiera que sea la escala (D=2), mientras que Hogg admite el estado fractal hasta una escala de 70 Mpc, que ya es mucho. En efecto, desde el radio de las galaxias, 10 kpc, hasta alrededor de 100 Mpc, se cuentan cuatro décadas (abarcan cuatro órdenes de magnitud [decimales], n. del t.). En el modelo emanado de la relatividad de escala, la dimensión fractal no es constante, sino que crece con la escala. Cuando alcanza D=3, se produce una transición hacia la uniformidad. Dicho esto, obtengo por mi parte una transición mayor, alrededor de 700 Mpc, en vez de 70 Mpc. Por tanto, no me sorprendería que la muestra estudiada sea todavía demasiado pequeña para determinar esta transición (se debe saber que desde hace 30 años, la escala de transición aumenta con el tamaño útil de las muestras)”.

Leyes clásicas y cuánticas

Para la relatividad de escala, las leyes fundamentales de la física se presentan bajo la misma forma cualquiera que sea la escala. En particular, esta forma única de las ecuaciones vale tanto para las leyes clásicas y como las cuánticas. Estas leyes toman formas diferentes cuando se aplican a escalas particulares.

“A escala cuántica, se pueden identificar las partículas (y sus propiedades de onda y de campo) a las geodésicas pertenecientes a un espacio-tiempo no diferenciable. No hay necesidad de considerar que existen unas partículas que seguirían unas trayectorias, porque las propiedades internas de estas partículas (masa, espín, carga) se pueden definir de manera puramente geométrica como manifestación de estos fractales geodésicos. La física actual supone que el espacio-tiempo es continuo y dos veces diferenciable, la relatividad de escala supone solamente que es continuo. Con ella se puede prescindir de manejar dos hipótesis”.

¿La física cuántica contempla el carácter fractal de la materia a las escalas de Planck? “Existen dos propuestas a este respecto, señala Laurent Nottale. Pero en la relatividad de escala, la fractalidad del espacio-tiempo domina desde el nivel cuántico ordinario (atómico, nuclear, partículas) y no solamente desde las escalas extremadamente pequeñas (la escala de Planck es 1.0 × 10 elevado a 17 veces más pequeña que la menor de las escalas alcanzadas hasta ahora en los aceleradores de partículas)”.

La relatividad de escala no nos permite sin embargo por ahora aportar soluciones a la cuestión de la gravitación cuántica.

“Nada por el momento nos permite mantener esta esperanza, añade Laurent Nottale. Construir una teoría de la gravitación cuántica resulta tan difícil en la relatividad de escala como en otras perspectivas. Se trataría, en el marco de la relatividad de escala, de describir un espacio-tiempo curvo (expresión de la gravitación) y fractal (expresión del mundo cuántico y de los campos de cabida) en la situación que se produce en la escala de Planck, donde la curvatura y la fractalidad convergen en un solo orden, lo que resultaría extremadamente difícil. Tampoco hay concurrencia con la teoría de cuerda: nada nos impide considerar las cuerdas en un espacio-tiempo fractal. Pero las dos teorías no se encuentran en el mismo plano: una interviene en el nivel de los objetos, la otra en el nivel del marco. De cualquier forma, las motivaciones también son fundamentalmente distintas: la teoría de cuerda admite como leyes fundamentales las leyes cuánticas e intentan cuantificar el campo gravitacional, mientras que la motivación de la relatividad de escala es fundar las leyes cuánticas sobre el principio de relatividad”.

Conclusión

Se pueden adivinar las implicaciones teóricas y prácticas, incluso filosóficas, que se derivarían de la posibilidad de verificar, a partir de nuevas observaciones, las hipótesis de la relatividad de escala. ¿Se debería sólo constatar el carácter fractal del espacio-tiempo o se podría comprender el por qué de dicho carácter? ¿El vacío cuántico está estructurado fractalmente? A gran escala, ¿avanza el carácter fractal indefinidamente en el seno de un espacio-tiempo ilimitado?

Y una cuestión que sin duda se harán los físicos de la materia macroscópica y los biólogos: ¿podría atribuirse a este carácter fractal del espacio-tiempo subyacente el hecho de que la morfogénesis de la mayor parte de los entes del mundo físico y de la materia viva parece construirse siguiendo el modelo fractal?



Jean-Paul Baquiast es miembro directivo de PanEurope France y editor de la revista Automates Intelligents. Artículo publicado originalmente en la mencionada revista. Se publica con autorización. Traducción del francés: Yaiza Martínez.


Tema relacionado:

Entrevista con Laurent Nottale en Automates Intelligents





Jean-Paul Baquiast
Artículo leído 41725 veces



Más contenidos