Imagen: peasap. Fuente: Flickr.
En un cerebro sano, el cambio más aparente en el comportamiento y en la conciencia se da cuando nos dormimos, en el momento que se pasa del estado de vigilia, despiertos y conscientes de lo que nos rodea, el de sueño.
Un estudio publicado en la versión impresa en Cerebral Cortex, liderado por Gustavo Deco, profesor de investigación ICREA del Departamento de Tecnologías de la Información y las Comunicaciones (DTIC) y director del Centro de Cognición y Cerebro de la Universidad Pompeu Fabra (UPF) de Barcelona, ha puesto de manifiesto los cambios, locales y globales , que suceden en el cerebro cuando una persona cae dormida.
Un cambio gradual
En el cerebro hay una región ampliamente conservada a lo largo de la evolución, el sistema activador reticular, que incluye la formación reticular y sus conexiones y que es responsable de la regulación del estado de vigilia y de las oscilaciones diurnas/nocturnas.
Una disminución de la actividad del sistema activador reticular provoca el sueño de onda lenta, el cual se caracteriza por la lentitud de las ondas cerebrales. Durante la noche, el sueño de onda lenta sincronizado alterna con el sueño paradójico o desincronizado,de manera que la mayor parte del sueño es del tipo de onda lenta, con intervalos de sueño paradójico.
Gustavo Deco, director del Centro Cognición y Cerebro, conjuntamente con científicos estadounidenses y suizos, han constatado que este cambio no es tanto repentino, sino que es más gradual de lo que se creía. Han evidenciado también que, al despertar se registran ondas lentas a nivel local y que las ondas lentas, rara vez son globales.
Un estudio publicado en la versión impresa en Cerebral Cortex, liderado por Gustavo Deco, profesor de investigación ICREA del Departamento de Tecnologías de la Información y las Comunicaciones (DTIC) y director del Centro de Cognición y Cerebro de la Universidad Pompeu Fabra (UPF) de Barcelona, ha puesto de manifiesto los cambios, locales y globales , que suceden en el cerebro cuando una persona cae dormida.
Un cambio gradual
En el cerebro hay una región ampliamente conservada a lo largo de la evolución, el sistema activador reticular, que incluye la formación reticular y sus conexiones y que es responsable de la regulación del estado de vigilia y de las oscilaciones diurnas/nocturnas.
Una disminución de la actividad del sistema activador reticular provoca el sueño de onda lenta, el cual se caracteriza por la lentitud de las ondas cerebrales. Durante la noche, el sueño de onda lenta sincronizado alterna con el sueño paradójico o desincronizado,de manera que la mayor parte del sueño es del tipo de onda lenta, con intervalos de sueño paradójico.
Gustavo Deco, director del Centro Cognición y Cerebro, conjuntamente con científicos estadounidenses y suizos, han constatado que este cambio no es tanto repentino, sino que es más gradual de lo que se creía. Han evidenciado también que, al despertar se registran ondas lentas a nivel local y que las ondas lentas, rara vez son globales.
Representación de conectividades cerebrales. Fuente: UPF.
Modelos computacionales
Los estudios de imagen mediante resonancia magnética funcional (fMRI ) revelan cambios en la conectividad funcional en estado de reposo cerebral, entre el momento de despertar y el sueño de onda lenta. Aunque queda poco claro cómo se altera el estado de reposo durante este periodo de transición.
Como ha manifestado Deco en un comunicado, "en este estudio, hemos utilizado modelos computacionales para simular las conexiones anatómicas cortico-corticales humanas para evaluar los cambios de funcionalidad del estado de reposo cerebral cuando el modelo "cae dormido", y así es como han podido poner de manifiesto que hay una disminución progresiva de la excitación de la neuromodulación.
De esta manera, el estudio muestra que cuando la neuromodelación colinérgica (mediante el neurotransmisor acetilcolina) disminuye, aparecen las ondas lentas locales, mientras que la organización general de las redes neuronales en estado de reposo no cambia.
A nivel macroscópico, estas ondas lentas locales, se estructuran en redes similares en las redes en estado de reposo. Ahora bien, cuando el neuromodulador disminuye aún más, a niveles muy bajos, las ondas lentas se convierten en globales y las redes neuronales del estado de reposo se funden en una sola e indiferenciada red ampliamente sincronizada .
Los estudios de imagen mediante resonancia magnética funcional (fMRI ) revelan cambios en la conectividad funcional en estado de reposo cerebral, entre el momento de despertar y el sueño de onda lenta. Aunque queda poco claro cómo se altera el estado de reposo durante este periodo de transición.
Como ha manifestado Deco en un comunicado, "en este estudio, hemos utilizado modelos computacionales para simular las conexiones anatómicas cortico-corticales humanas para evaluar los cambios de funcionalidad del estado de reposo cerebral cuando el modelo "cae dormido", y así es como han podido poner de manifiesto que hay una disminución progresiva de la excitación de la neuromodulación.
De esta manera, el estudio muestra que cuando la neuromodelación colinérgica (mediante el neurotransmisor acetilcolina) disminuye, aparecen las ondas lentas locales, mientras que la organización general de las redes neuronales en estado de reposo no cambia.
A nivel macroscópico, estas ondas lentas locales, se estructuran en redes similares en las redes en estado de reposo. Ahora bien, cuando el neuromodulador disminuye aún más, a niveles muy bajos, las ondas lentas se convierten en globales y las redes neuronales del estado de reposo se funden en una sola e indiferenciada red ampliamente sincronizada .
Referencia bibliográfica:
Gustavo Deco, Patric Hagmann, Anthony G. Hudetz, Giulio Tononi. Modeling Resting-State Functional Networks When the Cortex Falls Asleep: Local ang Global Changes, Cerebral Cortex (2014) DOI: 10.1093/CERCOR/bht176.
Gustavo Deco, Patric Hagmann, Anthony G. Hudetz, Giulio Tononi. Modeling Resting-State Functional Networks When the Cortex Falls Asleep: Local ang Global Changes, Cerebral Cortex (2014) DOI: 10.1093/CERCOR/bht176.