Detectan materia emergiendo de la fusión de dos estrellas de neutrones

El espectáculo ocurrió en agosto de 2017 a 130 millones de años luz de la Tierra


Una espectacular colaboración de radiotelescopios de los cinco continentes ha demostrado la existencia de un chorro de materia emergiendo de la fusión de dos estrellas de neutrones, ocurrido a 130 millones de años luz de la Tierra.


IAA/T21
26/02/2019

lustración de dos estrellas de neutrones en el momento de la fusión. Fuente: NSF / LIGO / Universidad Estatal de Sonoma / A. Simonnet
Un equipo internacional de astrónomos, con participación de investigadores del Instituto de Astrofísica de Andalucía (IAA-CSIC), ha demostrado la existencia de un chorro de materia emergiendo de la fusión de dos estrellas de neutrones, desplazándose a velocidades cercanas a la de la luz. Para la detección, los científicos han utilizado radiotelescopios situados en cinco continentes. Los resultados se publican en la revista científica Science.

“En agosto de 2017, dos estrellas de neutrones colisionaron y se fundieron en un solo objeto, produciendo ondas gravitatorias que se detectaron con los observatorios LIGO y Virgo”, explica Miguel Pérez-Torres, investigador del Instituto de Astrofísica de Andalucía (IAA-CSIC) que participa en el trabajo.

“La fusión de estas dos estrellas de neutrones (estrellas muy densas, con masas similares al Sol, pero del tamaño de la ciudad de Madrid) sucedió en una galaxia situada a 130 millones de años luz de la Tierra. Era la primera vez que se detectaba luz a lo largo de todas las longitudes de onda del espectro electromagnético asociada a un fenómeno relacionado con la producción de ondas gravitatorias”, indica el investigador.

Ondas gravitatorias

Los astrónomos han observado el evento y su posterior evolución a lo largo de todo el espectro electromagnético, desde los rayos gamma hasta las ondas de radio. Doscientos días después de la fusión, las observaciones obtenidas combinando radiotelescopios de Europa, Asia, África, Oceanía y América, han mostrado la existencia de un chorro de materia que emergía como resultado de la fusión, desplazándose a velocidades cercanas a la de la luz.

“La fusión de estas dos estrellas de neutrones ha permitido por vez primera asociar correctamente la detección de ondas gravitatorias con una de las explosiones más potentes en el universo, los estallidos de rayos gamma, confirmando así diversas teorías científicas que han estado bajo discusión durante lustros”, indica Iván Agudo, investigador del Instituto de Astrofísica de Andalucía (IAA-CSIC) que participa en el estudio.

Después de la fusión, una importante cantidad de material se expulsó al espacio, formando una envoltura que ha sido observada por los astrónomos durante todo este tiempo. Sin embargo, quedaban varias cuestiones que los astrónomos no podían resolver con los datos obtenidos hasta ahora.

“Esperábamos que parte de este material fuese expulsado en forma de un chorro moviéndose a una velocidad cercana a la de la luz, pero no estaba claro si este chorro podría o no atravesar la envoltura alrededor de la fusión”, explica Agudo.

La red mundial de todas las instituciones que participaron en la observación. © Paul Boven (JIVE)
Dos escenarios

Había dos posibles escenarios: que el chorro no pudiese romper la envoltura y, por tanto, únicamente se observase algo parecido a una burbuja en expansión, o que el chorro rompiese la envoltura y siguiese moviéndose por el espacio sin el corsé de la burbuja.

Solo la obtención de imágenes en ondas de radio con una gran sensibilidad y detalle podría distinguir un caso del otro. Esto requería el uso de una técnica conocida como interferometría de muy larga base (VLBI, por sus siglas en inglés), donde los astrónomos combinan radiotelescopios situados a lo largo de la Tierra.

Los autores del trabajo llevaron a cabo observaciones de esta región del cielo el 12 de marzo de 2018 usando 32 radiotelescopios pertenecientes a la red VLBI Europea (EVN, que conecta telescopios de España como Yebes, en Guadalajara, Italia, Alemania, Suecia, Países Bajos, Polonia, Letonia, Reino Unido, Rusia, China y Sudáfrica), e-MERLIN en Reino Unido, la red Australiana de larga base (LBA, con antenas en Australia y Nueva Zelanda) y la red de muy larga base (VLBA) de Estados Unidos.

Los datos de todos estos telescopios se enviaron al instituto JIVE en los Países Bajos, donde se combinaron para producir las imágenes finales, que alcanzaron un nivel de detalle tan grande como para distinguir a una persona caminando sobre la superficie de la Luna.

Un camión en la Luna

Siguiendo con la misma analogía, la existencia de la burbuja en expansión aparecería con el tamaño equivalente al de un camión en la Luna, mientras que un chorro presentaría un tamaño muy inferior. “Comparando las imágenes simuladas y las reales, encontramos que únicamente la posibilidad del chorro era compatible con el objeto observado”, explica Miguel Pérez-Torres (IAA-CSIC).

El equipo también determinó que este chorro mostraba tanta energía como la producida por todas las estrellas de nuestra Galaxia durante un año entero. “Estos resultados confirman la existencia de un chorro de partículas que atravesó la envoltura y se propaga a velocidades próximas a la de la luz”, añade Pérez-Torres (IAA-CSIC).  En los próximos años, varias de estas fusiones de dos estrellas de neutrones serán descubiertas.

“Los resultados obtenidos también sugieren que más del 10% de estas fusiones deberían producir chorros que atraviesen la envoltura inicial y por tanto podría ser observados”, explica Iván Agudo. Este tipo de observaciones permitirá clarificar los procesos físicos que tienen lugar en uno de los eventos más poderosos que ocurren en el universo.

Referencia

Compact radio emission indicates a structured jet was produced by a binary neutron star merger. G. Ghirlanda et al. Science  21 Feb 2019:eaau8815. DOI: 10.1126/science.aau8815



IAA/T21
Artículo leído 2368 veces



Más contenidos