Un trabajo publicado en la revista Nature Physics y liderado por investigadores de la Universidad de Barcelona ha permitido describir un mecanismo básico de autoorganización colectiva de las neuronas en cultivo.
Los autores del artículo han podido determinar el origen físico de este comportamiento colectivo, que tiene lugar sin la necesidad de un líder o de una guía de origen biológico.
Este fenómeno puede explicar los mecanismos que originan y caracterizan la actividad eléctrica espontánea de los tejidos neuronales, un aspecto de gran relevancia en neurociencia. En el estudio también se apunta que este comportamiento puede emplearse para describir otros sistemas similares en ámbitos muy diferentes, como por ejemplo la propagación de rumores en las redes sociales.
El trabajo, destacado en otro artículo de la misma revista, en el apartado News and Views, lo ha llevado a cabo un equipo de investigadores catalanes de la UB, encabezados por los doctores Jaume Casademunt y Jordi Soriano, junto con los investigadores Javier G. Orlandi y Sara Teller. También ha colaborado en la investigación el Dr. Enric Álvarez Lacalle, de la Universidad Politécnica de Cataluña.
Los autores del artículo han podido determinar el origen físico de este comportamiento colectivo, que tiene lugar sin la necesidad de un líder o de una guía de origen biológico.
Este fenómeno puede explicar los mecanismos que originan y caracterizan la actividad eléctrica espontánea de los tejidos neuronales, un aspecto de gran relevancia en neurociencia. En el estudio también se apunta que este comportamiento puede emplearse para describir otros sistemas similares en ámbitos muy diferentes, como por ejemplo la propagación de rumores en las redes sociales.
El trabajo, destacado en otro artículo de la misma revista, en el apartado News and Views, lo ha llevado a cabo un equipo de investigadores catalanes de la UB, encabezados por los doctores Jaume Casademunt y Jordi Soriano, junto con los investigadores Javier G. Orlandi y Sara Teller. También ha colaborado en la investigación el Dr. Enric Álvarez Lacalle, de la Universidad Politécnica de Cataluña.
Cultivos neuronales: una orquesta sin director
Las redes neuronales cultivadas fuera de su entorno natural son un sistema modelo relativamente sencillo que aporta una herramienta de gran interés para el estudio del comportamiento colectivo de las neuronas. Estos cultivos se preparan a partir de neuronas en estadios tempranos de desarrollo.
Al cabo de pocos días, las neuronas han formado espontáneamente una red de conexiones que presenta una rica actividad eléctrica.
Esta actividad se inicia con la emisión aleatoria y descoordinada de las neuronas individuales (lo que se conoce como ruido) y evoluciona a un estado de actividad coherente en el que todas las neuronas se activan de manera simultánea siguiendo un patrón “sorprendentemente armónico”, como lo califica Jaume Casademunt, profesor del Departamento de Estructura y Constituyentes de la Materia de la UB, en un comunicado de dicha Universidad.
“Emerge así, de manera espontánea, un comportamiento perfectamente orquestado de miles de neuronas sin necesidad de un director de orquesta, es decir, sin un elemento coordinador diferenciado que actúe como líder”, añade el investigador.
Como apunta Jordi Soriano, investigador Ramón y Cajal del mismo Departamento de la UB y pionero en la experimentación con cultivos neuronales en Cataluña, “este fenómeno estaría presente en todos los tejidos neuronales en estados tempranos de su desarrollo, y puede ser clave a la hora de establecer las pautas de actividad espontánea de los diferentes tejidos neuronales, un aspecto de importancia capital en neurociencia”.
El estudio de estos patrones de comportamiento nos permite comprender cómo están programadas las neuronas en tanto que unidades elementales del sistema nervioso, y qué fuerzas primarias rigen su comportamiento. Estas fuerzas definen la base sobre la cual actúan los diferentes agentes biológicos que controlan el proceso de desarrollo del sistema nervioso en los organismos vivos.
Las redes neuronales cultivadas fuera de su entorno natural son un sistema modelo relativamente sencillo que aporta una herramienta de gran interés para el estudio del comportamiento colectivo de las neuronas. Estos cultivos se preparan a partir de neuronas en estadios tempranos de desarrollo.
Al cabo de pocos días, las neuronas han formado espontáneamente una red de conexiones que presenta una rica actividad eléctrica.
Esta actividad se inicia con la emisión aleatoria y descoordinada de las neuronas individuales (lo que se conoce como ruido) y evoluciona a un estado de actividad coherente en el que todas las neuronas se activan de manera simultánea siguiendo un patrón “sorprendentemente armónico”, como lo califica Jaume Casademunt, profesor del Departamento de Estructura y Constituyentes de la Materia de la UB, en un comunicado de dicha Universidad.
“Emerge así, de manera espontánea, un comportamiento perfectamente orquestado de miles de neuronas sin necesidad de un director de orquesta, es decir, sin un elemento coordinador diferenciado que actúe como líder”, añade el investigador.
Como apunta Jordi Soriano, investigador Ramón y Cajal del mismo Departamento de la UB y pionero en la experimentación con cultivos neuronales en Cataluña, “este fenómeno estaría presente en todos los tejidos neuronales en estados tempranos de su desarrollo, y puede ser clave a la hora de establecer las pautas de actividad espontánea de los diferentes tejidos neuronales, un aspecto de importancia capital en neurociencia”.
El estudio de estos patrones de comportamiento nos permite comprender cómo están programadas las neuronas en tanto que unidades elementales del sistema nervioso, y qué fuerzas primarias rigen su comportamiento. Estas fuerzas definen la base sobre la cual actúan los diferentes agentes biológicos que controlan el proceso de desarrollo del sistema nervioso en los organismos vivos.
El equipo de la UB, formado por Javier G. Orlandi, Jaume Casademunt, Jordi Soriano y Sara Teller. Fuente: UB.
Concentración del ruido
El fenómeno se explica por lo que los investigadores catalanes han bautizado como focalización del ruido (noise focusing en inglés), según el cual se produce una concentración del ruido en un punto de la red, que no es siempre el mismo y que depende de la red en su conjunto.
En este punto se origina una ola que se propaga al resto de la red y hace que esta se comporte de manera sincronizada.
El origen físico del fenómeno, que se produce por la combinación de la dinámica de excitación de las neuronas y las propiedades estadísticas de las redes de conexión, sugiere también que este comportamiento se puede utilizar para describir otros fenómenos colectivos similares en ámbitos muy diferentes, como por ejemplo la generación y propagación de rumores en las redes sociales.
El fenómeno se explica por lo que los investigadores catalanes han bautizado como focalización del ruido (noise focusing en inglés), según el cual se produce una concentración del ruido en un punto de la red, que no es siempre el mismo y que depende de la red en su conjunto.
En este punto se origina una ola que se propaga al resto de la red y hace que esta se comporte de manera sincronizada.
El origen físico del fenómeno, que se produce por la combinación de la dinámica de excitación de las neuronas y las propiedades estadísticas de las redes de conexión, sugiere también que este comportamiento se puede utilizar para describir otros fenómenos colectivos similares en ámbitos muy diferentes, como por ejemplo la generación y propagación de rumores en las redes sociales.
Referencias bibliográficas:
J. G. Orlandi, J. Soriano, E. Álvarez-Lacalle, S. Teller y J. Casademunt. Noise focusing and the emergence of coherent activity in neuronal cultures. Nature Physics (2013). DOI: 10.1038/nphys2686.
J. M. Beggs. Neuronal networks: Focus amidst the noise. Nature Physics, News and Views (2013). DOI:10.1038/nphys2707.
J. G. Orlandi, J. Soriano, E. Álvarez-Lacalle, S. Teller y J. Casademunt. Noise focusing and the emergence of coherent activity in neuronal cultures. Nature Physics (2013). DOI: 10.1038/nphys2686.
J. M. Beggs. Neuronal networks: Focus amidst the noise. Nature Physics, News and Views (2013). DOI:10.1038/nphys2707.